History and Future of Endoscopic Ultrasound (EUS)

- 1966
 - PDL's 2nd year medicine
 - Father of Modern Medicine

History and Future of EUS

- 1966
 - PDL's 2nd year medicine
 - Father of Modern Medicine

- 1966
 - Leonard "Bones" McCoy
 - Father of Modern Medicine

History and Future of EUS

- 1966
 - PDL's 2nd year medicine
 - Father of Modern Medicine

History and Future of EUS

- 1966
 - PDL's 2nd year medicine
 - Father of Modern Medicine

History and Future of EUS

- 1966
 - PDL's 2nd year medicine
 - Father of Modern Medicine

History and Future of EUS

- 1966
 - PDL's 2nd year medicine
 - Father of Modern Medicine
History and Future of EUS

1966
- PDL's 2nd year medicine
- Father of Modern Medicine

Background
- 1895 – Roentgen – Xrays
- 1913 – Fessenden – "oscillator"
 1990’s – Ultrasound
- WWII – Nuclear medicine

Modern Medicine

I can examine him from the back.
1895 – Roentgen – Xrays
1913 – Fessenden – “oscillator”
1950’s – ultrasound
WWII – nuclear medicine
1957 – “flexible” fiberscope

Where do you insert that?

What’s a cystoscope?
History and Future of EUS

Background
- 1895 – Roentgen – X-rays
- 1913 – 50's Fessenden – ultrasound
- WWII – nuclear medicine
- 1957 – Hounsfield – C.T. scan
- 1968 – ERCP

Is there life outside the box?
History and Future of EUS

Background
- 1895 – Roentgen – X-rays
- 1913 – 50’s Fessenden – ultrasound
- WWII – nuclear medicine
- 1957 – 1960’s endo/ERCP
- 1972 – Hounsfield – C.T. scan
- 2000 – Thompson/Nuvt – PET/CT

1980

EUS
- 1980 – Eugene DiMagno
 Lancet: “Ultrasonic Endoscope”

1980’s
- Europe

1990’s
- USA

1995 – linear ultrasonography (EUS – guided biopsies)
History and Future of EUS

- **EUS**
 - 1980 – “Ultrasonic Endoscope”
 - radial scopes
 - 1980’s – Europe
 - 1990’s – USA
 - 1995 – linear ultrasonography (EUS-guided biopsies)

- **EUS**
 - 1980 – “Ultrasonic Endoscope”
 - radial scopes
 - 1980’s – Europe
 - 1990’s – USA
 - 1995 – linear ultrasonography (EUS-guided biopsies)
 - 2000’s – Canada

- **EUS**
 - 1980 – “Ultrasonic Endoscope”
 - radial scopes
 - 1980’s – Europe
 - 1990’s – USA
 - 1995 – linear ultrasonography (EUS-guided biopsies)
 - 2000’s – Canada

- **EUS**
 - 2015 – esophagus/mediastinum
 - Esophageal wall cyst

- **EUS**
 - 2015 – esophagus/mediastinum
 - Metastatic lung CA

- **EUS**
 - 2015 – esophagus/mediastinum
 - Esophageal cancer
History and Future of EUS

- EUS
 - 2015 - esophagus/mediastinum
 - stomach
 - biliary
 - liver

Metastatic breast CA

Lipoma

Primary sclerosing cholangitis

Cholangiocarcinoma

Metastatic pancreas CA

Pancreas adenocarcinoma
History and Future of EUS

- EUS
 - 2015 - esophagus/mediastinum
 - stomach
 - biliary
 - liver
 - pancreas

Pancreas mass

History and Future of EUS

- EUS
 - 2015 - esophagus/mediastinum
 - stomach
 - biliary
 - liver
 - pancreas

Pancreas neuroendocrine tumor

History and Future of EUS

- EUS
 - 2015 - esophagus/mediastinum
 - stomach
 - biliary
 - liver
 - pancreas

Mucinous cystadenoma

History and Future of EUS

- EUS
 - 2015 - esophagus/mediastinum
 - stomach
 - biliary
 - liver
 - pancreas
 - other

Adrenal metastasis - lung CA

History and Future of EUS

- EUS
 - 2015 - esophagus/mediastinum
 - stomach
 - biliary
 - liver
 - pancreas
 - other
 - rectal

Gastrointestinal stromal tumor
History and Future of EUS

- EUS - present
 - 2015 - any orifice for superior staging and definitive diagnoses
 - range limited by ultrasound penetrance/length of needle
 - drainage of cysts for diagnosis and therapy (pseudocysts)
 - rendezvous procedure - failed retrograde ERCP (*PTC*)
 - stents - bile duct and gallbladder (*PTC*)
 - elastography to assess lesion “stiffness” (infiltration)
History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement; computerized diagnosis
- functional relevance

- development of non-EUS imaging enhancements (e.g. CT colonography)
History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement; computerized diagnosis
- functional relevance
- development of non-EUS imaging enhancements (e.g. CT colonography)
- collaboration and communication

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement; computerized diagnosis
- functional relevance
- development of non-EUS imaging enhancements (e.g. CT colonography)
- collaboration and communication

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement; computerized diagnosis
- functional relevance
- development of non-EUS imaging enhancements (e.g. CT colonography)
- collaboration and communication

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement; computerized diagnosis
- functional relevance
- development of non-EUS imaging enhancements (e.g. CT colonography)
- collaboration and communication
History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement
- functional relevance
- development of non-EUS imaging enhancements (e.g., CT colonography)
- collaboration

History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement
- functional relevance
- development of non-EUS imaging enhancements (e.g., CT colonography)
- collaboration

History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement
- functional relevance
- development of non-EUS imaging enhancements (e.g., CT colonography)
- collaboration

History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement
- functional relevance
- development of non-EUS imaging enhancements (e.g., CT colonography)
- collaboration

History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement
- functional relevance
- development of non-EUS imaging enhancements (e.g., CT colonography)
- collaboration

History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement
- functional relevance
- development of non-EUS imaging enhancements (e.g., CT colonography)
- collaboration

History and Future of EUS

- contrast agents to enhance images
- 3D
- miniaturization
- availability/cost/efficiency
- less dependence on imaging (tumor markers, etc.)
- computer image enhancement
- functional relevance
- development of non-EUS imaging enhancements (e.g., CT colonography)
- collaboration
History and Future of EUS

- EUS - future
- 2015 -
 - contrast agents to enhance images
 - 3D
 - miniaturization
 - availability/efficiency
 - less dependence on imaging (tumor markers, etc.)
 - computer image enhancement; computerized diagnosis
 - functional relevance
 - development of non-EUS imaging enhancements (e.g., CT colonography)
 - collaboration

Leonard
"Bones" McCoy
Father of Modern Medicine
Age 137